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Abstract

A numerical and experimental study of the time-dependent hydrodynamic removal of a contaminated ¯uid from a cavity on the

¯oor of a duct is presented. The duct ¯ow has a parabolic inlet velocity pro®le and laminar ¯ows are considered in a Reynolds

number range between 50 and 1600 based on the duct height. The properties of the contaminated cavity ¯uid are assumed to be the

same as for the ¯uid ¯owing in the duct. Attention is focussed on the convective transport of contaminated ¯uid out from the cavity

and the e�ect of duct ¯ow acceleration on the cleaning process. Passive markers which are convected with the ¯ow are used in the

numerical simulation for the purpose of identifying the contaminated cavity ¯uid. It is shown that the cleansing of the cavity is more

pronounced during the unsteady start-up of the duct ¯ow and the rate of cleaning decreases as the ¯ow reaches a steady state. The

cleaning process is enhanced as the cavity aspect ratio is increased and as the duct Reynolds number increases. A ÔvolumetricÕ
approach based on the spread of markers is shown to be useful in determining the fraction of the cavity that remains contaminated

after steady conditions have been reached. The distribution of the contaminant in a cavity during the unsteady stage and after steady

conditions are reached are identi®ed using passive markers. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

The hydrodynamic or aerodynamic removal of a ¯uid
foulant from the internal surfaces of process equipment is very
dependent on the roughness of the surface ®nish and any large
scale cavities which may arise through poorly ®tted compo-
nents and junctions in the pipework. This was highlighted by
the work of Mickaily and Middleman (1993) who measured
the e�ciency of aerodynamic cleaning of oil from the inside of
pipelines. Using a simple model based on the removal of a
deformable ¯uid foulant from a smooth surface by a steady
shear ¯ow they showed good agreement with experiments for
most of the cleaning period but failed to predict the long term
behaviour of the foulant. This was attributed to foulant being
trapped within small cavities embedded in the surface. By
modelling a ¯ow over a rough surface, using the analogy of a
Couette ¯ow over a ¯uid contained in a cavity, they were able
to improve the prediction of the maximum amount of foulant
which can be removed.

In earlier work Chilukuri and Middleman (1983) addressed
the problem of mass di�usion from a cavity which is initially
full of the same ¯uid as the ¯ushing ¯uid but which contains a
speci®ed concentration of a contaminant. Assuming that the
¯uid in the cavity does not interact with the cleaning ¯uid and
that the interface is straight they assess the in¯uence of the

recirculating ¯ow in the cavity on the removal of the con-
taminant by molecular di�usion. This is achieved by assuming
that the Navier±Stokes equations are decoupled from the mass
transfer equations and that the velocity components in the
cavity are those which exist in steady state conditions. The
analysis clearly shows that the secondary ¯ow in the cavity
enhances mass transfer by molecular di�usion from the cavity
by an order of magnitude or more and that it is a maximum
when the cavity aspect ratio (width/depth) is about 1.5.

Table 1, although not extensive, shows the breadth of
parameters which have been considered by previous studies
on steady ¯ows induced by a continuously moving interface
across the top surface of the cavity, or ¯ows induced by a
hydrodynamic imposed shear stress. Most previous studies
have assumed that the ¯ow Reynolds number is su�ciently
small that a Stokes ¯ow approximation is satisfactory. For
example, Alkire and Deligianni (1988) investigated Stokes
¯ow over a cavity for a range of aspect ratios between 0.75
and 10. They found that shallow cavities permit penetration
of the outer ¯ow in to the cavity whilst deeper cavities permit
only slight penetration. Occhialini and Higdon (1992), who
considered the e�ects of duct inlet ¯ow pro®le and system
geometry, show that a parabolic duct ¯ow allows more pen-
etration into the cavity. They also suggest that the cavity ¯ow
is sensitive to system geometry at a critical aspect ratio of
about 3. In general, it is suggested that mass transfer is en-
hanced as the duct ¯ow penetrates more deeply into the
cavity.
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Some studies, such as those by Kang and Chang (1982) and
Chang et al. (1987), have included the e�ects of the inertia
terms which distort the symmetry associated with Stokes ¯ow
and which become increasingly important as the Reynolds
number increases. These studies, however, are limited to steady
¯ows. Kang and Chang (1982) considered mass transfer from
pressure driven cavity ¯ows for Reynolds numbers in the range
20±500. They show how the eddy structure changes with
Reynolds number and the e�ect it has on mass transfer. Chang
et al. (1987) considered shear driven ¯ows in deep cavities and
show that mass transfer is enhanced mainly by the primary and
secondary vortices in the cavity. They also show that the
number of vortices increases as the cavity depth increases.
Reynolds numbers up to 300 were considered.

There have been many papers on lid-driven cavity ¯ows.
Examples of steady solutions using vorticity-streamfunction
formulations are those given by Ghia et al. (1982) and by
Schreiber and Keller (1983). Others, including Kim and Moin
(1985), Soh (1987), Vanka (1986) and Soh and Goodrich
(1988), used primitive variables in their formulations of the
Navier±Stokes equations. For a square cavity the solutions
show a primary central vortex with secondary vortices in each
of the two lower corners of the cavity. For deeper cavities the
number of main vortices increases.

At the lower corners of a cavity Mo�at (1964) has shown
that an in®nite number of vortices will be present. In practice,
however, numerical solutions can only model a ®nite number
of these due to the ®nite resolution of the ¯ow by the com-
putational mesh. This should not present a problem as it is
reasonable to assume that the primary cavity vortices and
secondary corner vortices will play the dominant role in the
removal of a cavity foulant.

Time-dependent solutions of lid-driven cavity ¯ows using
vorticity and velocity as primary unknowns are given by
Gatski et al. (1982), and solutions using primitive variables are
given by Chen and Chen (1984), Gustafson and Halasi (1986,
1987), Soh and Goodrich (1988) and Goodrich and Soh
(1989). In each of these cases the lid on the cavity is started
impulsively from rest and attention is focused on the vortex
dynamics. Goodrich and Soh (1989), who considered a lid
driven square cavity ¯ow with a lid Reynolds number of 1000,
showed that a secondary recirculatory vortex develops on the
upstream vertical boundary and gradually moves downwards
until it coalesces with a second vortex which has developed in
the lower corner of the cavity. For a deeper cavity of aspect

ratio two, Gustafson and Halasi (1987) show that soon after
the start-up the ¯ow in the cavity is symmetrical about the
vertical centreline of the cavity with the vortex centre located
close to the moving lid. As time progresses a secondary recir-
culating vortex forms on the upstream boundary and gradually
moves downwards to form a second main vortex.

The ¯ow in a two-dimensional cavity driven by an oscil-
lating lid has been considered by Soh and Goodrich (1988)
who show that a periodic steady solution is achieved at long
times after the initial start-up. Iwatsu et al. (1993) solve the
time dependent Navier±Stokes equations for three-dimen-
sional incompressible ¯ow in a cavity with an oscillating lid for
Reynolds numbers less than 2000 and lid oscillating frequen-
cies less than 10 rad/s. For su�ciently high frequencies the ¯ow
in the bulk of the three-dimensional cavity is similar to the
two-dimensional solution, but at low frequencies three-di-
mensional e�ects become more pronounced.

Whilst steady state cavity ¯ows and unsteady lid-driven
cavity ¯ows have received a considerable amount of attention
the unsteady ¯ow of a continuous ¯uid over a cavity and the
corresponding ¯ow in the cavity is less well researched. Some
work has been published on unsteady cavity ¯ows where this is
related to instability phenomena. For example, Pereira and
Sousa (1995) provide a review of work on moderate Reynolds
number ¯ows of around 3000 over a shallow cavity. An in-
stability process is described which can lead to self sustained
oscillations near the shear layer between the channel and
cavity. It is shown that complex coupling between an unstable
shear layer and the recirculating cavity ¯ow ®eld can lead to
eddy shedding. The topic of cavity cleaning is not considered.

Experimental results presented in this paper show that the
cleaning of cavities which contain a foulant with properties not
too di�erent from the cleaning ¯uid is primarily due to ¯ushing
by convection during and shortly after the start-up of the duct
¯ow. This particular aspect of the cleaning process has not
been considered before and forms the basis of the present
study. The di�usive removal of the contaminant becomes in-
creasingly important over a time period which is a few orders
of magnitude greater than the start-up time considered in the
present study. The contribution from mass di�usion is negli-
gible over the time periods considered and is therefore not
included in the analysis.

Understanding of the cleaning process requires an insight
into the way in which the secondary ¯ows develop within a
cavity. Attention in the present work is focused on the tran-

Table 1

A selection of studies of cavity ¯ows

Authors Flow Cavity geometry Re Method

Kang and Chang (1982) Poiseuille, steady Rectangular, AR: 5.0 50±500 Numerical and Experimental

Higdon (1985) Shear ¯ow, steady Rectangular and circular,

AR: 0.25±4.0

Stokes Numerical

Shen and Floryan (1985) Combined Couette and

Poiseuille, steady

Rectangular, AR: 0.5±4.0 Stokes Numerical and experimental

Chang et al. (1987) Poiseuille, steady Rectangular, AR: 1.0±10.0 0±300 Numerical and experimental

Alkire et al. (1990) Poiseuille, steady Rectangular, AR: 0.75±10.0 Stokes Numerical and experimental

Yeckel et al. (1990) Shear ¯ow, steady Periodic rectangular and

triangular

Stokes Theoretical and experimental

Mickaily et al. (1992) Couette and Poiseuille,

steady

Periodic triangular Stokes Numerical and experimental

Occhialini and Higdon

(1992)

Couette and Poiseuille,

steady

Rectangular Stokes Numerical

Pozrikidis (1994) Shear ¯ow, steady Rectangular and

circular, AR: 0.25±4.0

Stokes Numerical

Fang et al. (1997) Poiseuille, steady Rectangular, AR: 0.25±4.0 50±1600 Numerical and experimental
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sient development of a cavity ¯ow which is driven by an ac-
celerating duct ¯ow, the in¯uence of duct ¯ow acceleration on
the cleaning rate and the e�ects of Reynolds number. In the
present study the numerical solution of the time dependent,
two-dimensional Navier±Stokes equations is achieved by a ®-
nite di�erence formulation using primitive variables and a
staggered grid arrangement as ®rst introduced by Harlow and
Welch (1965) in their Marker and Cell method. Similar ®nite
di�erence formulations of the equations of motion for other
problems have been used previously by, among others, Miyata
and Nishimura (1985), Liu et al. (1990), and Nicolaou et al.
(1993, 1995). These studies which cover a variety of ¯uid ¯ow
problems show that the formulation works well for modelling
incompressible laminar ¯ows. The ®nite di�erence code which
has been written for the present investigation has been vali-
dated by calculating and comparing lid-driven cavity ¯ows
with results of previous studies; the validation results are given
by Fang et al. (1997).

In the present study passive markers are introduced into
the ¯ow ®eld to enable ¯ow visualisation and measurement of
the amount of ¯uid foulant removed by convection from the
cavity; the markers play no part in the ¯ow calculations.
The ¯uid removal process during and shortly after the start-
up is compared both qualitatively and quantitatively with
experiments.

2. Physical model and numerical method

The geometry of the duct-cavity con®guration is shown in
Fig. 1. The maximum inlet velocity U and duct height H are
used as the characteristic velocity and length scales for the
problem so the Reynolds number is de®ned by Re � UH=m
where m is the kinematic viscosity of the ¯uid. The Cartesian
form of the non-dimensional Navier±Stokes and continuity
equations which describe the ¯ow of a two-dimensional, in-
compressible, viscous and non-di�usive ¯uid are:
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The ¯ow ®eld is discretized into cells of size dx� dz with cell
centres being identi®ed by integers i and k in the x and z di-
rections respectively. A staggered placement of variables is
used with horizontal velocity components u located on the
vertical sides of each cell, vertical components w on the hori-
zontal sides, and pressure p at cell centres. The time derivatives
are represented by forward di�erences and the spatial deriva-

tives by a combination of centred and upstream di�erencing.
For example, if integer n represents the time level, then u at a
new (n + 1) time level is calculated from

un�1
i�1=2;k � ui�1=2;k ÿ dt UCXi�1=2;k
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Values for terms with no superscript are taken at the nth time
level. The convection terms in (4) are given by
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where a is a combination factor; a� 0 gives centred di�er-
encing and a� 1 gives upstream di�erencing. A value of 0.5 is
used which is su�cient to avoid instabilities arising from nu-
merically introduced negative di�usion (Miyata and Nishi-
mura, 1985). Where a variable is not explicitly de®ned on the
grid then a simple average is calculated from adjacent values.
For example, ui�1;k � ui�3=2;k � ui�1=2;k

ÿ �
=2.

A time-dependent solution is obtained by advancing the
¯ow ®eld through a sequence of short time steps. The iterative
method used to converge the calculation at each time level is
based upon the method of Chorin (1968) which involves a si-
multaneous iteration on pressure and velocity. If Dn�1

i;k repre-
sents the divergence of the ¯uid in a cell where

Dn�1
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� �
� 1

dx
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then the pressure pn�1
i;k in that cell is adjusted in a way that

drives the divergence in all cells towards zero. The pressure is
updated using

pn�1
i;k

� �m�1

� pn�1
i;k

� �m
ÿ b Dn�1

i;k

� �m
; �8�

where m indicates the mth sweep of the mesh and ÔbÕ is a re-
laxation parameter. The solution is reached when the magni-
tude of Dn�1

i;k in each cell is less than some pre-set small value,
typically O( 10ÿ6). No-slip boundary conditions are applied at
all solid boundaries, a ¯ow velocity is prescribed at the in¯ow
boundary and zero normal gradients are used to set variables
just outside the out¯ow boundary.

Flow visualisation and ¯uid contamination calculations are
made possible by the use of passive markers. These are initially
distributed before start-up and are moved to new positions at
each time step. For example the new x-position of a marker k
at time level (n + 1) is calculated from xn�1

k � xn
k � un�1

k dt, where
uk is the horizontal velocity at the marker position, xn

k . The
velocity components at the marker positions are calculated byFig. 1. The coordinate system for a duct-cavity set-up.
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a weighted interpolation of velocities in surrounding cells as
described by Welch et al. (1966).

Approximate stability conditions for the method used have
been provided by Miyata and Nishimura (1985) and place
restrictions on the time step and the combination factor, a:

dt
dx

u
�

� dt
dz

w
�
6 a6 1 and m6 1ÿ a �dt=dx�u� �dt=dz�w� �

2dt 1=dx2 � 1=dz2� � :

Only the ®rst of these two conditions imposes a restriction for
the present problem; the second condition becomes restrictive
only for highly viscous ¯ows. The time steps chosen for the
present ¯ow problems generally satis®ed dt6 adx=U which
proved to be a su�cient condition for numerical stability.

The computer code has been validated by application to
two di�erent types of problem for which solutions are avail-
able. The ®rst test was with a steady lid-driven cavity ¯ow
when Re� 400 as considered by Ghia et al. (1982). Comparing
¯ow velocities from the present method with those from Ghia
et al. gave good agreement with di�erences being of the order
of 1% or less. The second test was a numerical simulation of a
time dependent collapse of a uniformally mixed region in a
linearly strati®ed ¯uid as considered experimentally by Wu
(1969). For this problem the density equation was included in
the formulation to account for the density strati®cation.
Measuring the length of the mixed region at di�erent times and
comparing with the experimental results of Wu (1969) the
di�erences were typically less than 2% at early times, but in-
creased after a long time when the thickness of the collapsed
region had decreased to an order of magnitude equal to a cell
height. This was consistent with the observations of Young
and Hirt (1972) in their numerical study of the same problem.
Doubling the number of cells and halving the time step had
little e�ect on the results at the early times but did improve the
results when the width of the mixed region became small.

For the problem of a duct ¯ow over a cavity the maximum
cell size used was 0:02� 0:02 and the time step never exceeded
dt � 0:01 for the range of Reynolds numbers considered.
Values less than these had negligible e�ect on the overall re-
sults obtained, but smaller cell sizes did improve the resolution
of the smaller vortices in the cavities.

3. Flow characteristics

To understand the way in which a cavity can be purged, it is
®rst necessary to see how the ¯ow develops as the duct ¯uid
accelerates from rest to some prescribed duct ¯ow Reynolds
number. In most of the ensuing discussion the entry pro®le to
the duct is always assumed to be parabolic and the start-up
¯ow velocity varies as

u � 1ÿ 1� � at�ÿ1
;

where the parameter a determines the magnitude of the ac-
celeration. Except where stated otherwise, the value used is
a� 10.

For ratios of cavity depth to duct height, D/H, between 1
and 4, numerical tests have shown almost no change in the
cavity ¯ow characteristics after steady ¯ow conditions are
reached. However, the value of D/H can in¯uence the per-
centage of contaminated ¯uid trapped in a cavity for aspect
ratios greater than one. Further details are given in Section 4.

The development of vortices in a deep cavity as time pro-
gresses is shown in Fig. 2. For AR� 0.25 and Re� 50. At the
beginning of the ¯ow development the streamline contours
tend to be symmetrically spaced about the centreline of the
cavity since the Reynolds number based on the instantaneous
maximum in¯ow velocity is within the Stokes ¯ow range. At

later times vortices form, and it has been observed that de-
creasing the aspect ratio leads to more vortices forming, with
the bottom vortex becoming weaker as the cavity depth in-
creases. It may be anticipated that under such conditions the
scouring of the bottom of a cavity becomes negligible for very
deep cavities. In their steady ¯ow study Chang et al. (1987)
suggest that in such deep cavities only the top two vortices
a�ect mass transfer.

Streamlines for two cavities of aspect ratios AR� 1 and 4,
and with Re� 50, are shown in Fig. 3. For AR� 1, a primary
vortex begins to form at about t� 4 and develops into a single
large vortex by the time the ¯ow is essentially steady. The
centre of the vortex is located about three quarters of the
cavity depth from the bottom and at mid-width. The ¯ow
velocities associated with the vortex are greater in the upper
portion of the cavity. This is broadly in agreement with the
results of Burggraf (1966). In practice a pair of small and
weaker counter-rotating vortices develop in the lower corners
of the cavity which are not resolved by the size of the grid
spacing used in the present calculations. For AR� 4, a main
vortex forms at the upstream wall of the cavity, very much like
a ¯ow over a backward facing step.

The transient streamline patterns shown in Figs. 2 and 3
suggest that at the early stages after start-up, the external ¯ow
has a tendency to penetrate to the bottom of the cavity. For
AR� 4 the ¯ow penetration to the bottom of the cavity re-
mains beyond the start-up stage, eventually leaving one large
main vortex in the upstream corner of the cavity; smaller un-

Fig. 2. Cavity ¯ow development for AR� 0.25 and Re� 50.

Fig. 3. Cavity ¯ow development for AR� 1 and 4, Re� 50.
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resolved vortices exist close to the lower corners of the cavity.
This penetration of the external ¯ow has been noted for steady
Stokes ¯ow by Shen and Floryan (1985) and Higdon (1985). A
similar penetration has been noted for steady ¯ows at higher
Reynolds numbers by Kang and Chang (1982), and they also
show that the movement of the stagnation point on the bottom
of the cavity gives rise to increased mass transfer at the bottom
wall of the cavity. The ®nal ¯ow pattern, and therefore the
cleaning e�ectiveness, will depend on the ¯ow Reynolds
number which determines the degree of penetration of the duct
¯ow into the cavity. But it is reasonable to expect that the
cleaning process will also be a�ected by the acceleration of the
¯ow to its steady state.

Fig. 4 illustrates the ¯ow development over a cavity with
AR� 4 following an instantaneous start of the duct ¯ow to a
Reynolds number of Re� 400. Numerical calculations have
shown that the ¯ow patterns initially (up to about t� 1) re-
semble stokes ¯ow and by t� 6 a main vortex forms at the
upstream wall of the cavity. Deep penetration of the outer ¯ow
only occurs at the earliest times and it is this motion which is
mainly responsible for purging of the contaminated cavity
¯uid. Following the initial Stokesian ¯ow and the early stages
in the development of the main vortex, considerable mixing of
the cavity ¯uid then occurs via one single vortex occupying the
entire cavity when steady state conditions have been reached.
For the conditions applying to Fig. 4, the steady state ¯ow was
fully established by a nondimensional time of 40.

To assess the e�ect of ¯ow acceleration on the intermediate
¯ow patterns, a linear ¯ow acceleration from rest is considered
such that

Re � 400 �t=tm� for 0 < t < tm;

Re � 400 for t P tm;

where t is nondimensional time and tm represents the nondi-
mensional time it takes for the ¯ow Reynolds number to reach
400. The streamlines for instantaneous Re values of 50, 100
and a ®nal value of 400 are shown in Fig. 5 for tm� 0.4 and 40.
The ¯ows at the instantaneous Re values for the fast acceler-
ation are not the same as the steady state ¯ow patterns at the
corresponding Reynolds numbers. For instance, the ¯ow
streamline patterns for Re� 400 shown in the column corre-
sponding to tm � 0:4 resemble those for a steady state ¯ow at
Re� 50. These observations are due to the time required for
the ¯uid to overcome its inertia and to adjust to the new ¯ow
parameter values. The acceleration corresponding to tm � 40 is
su�ciently slow to enable the ¯ow to adjust and, therefore, the
¯ow patterns at the instantaneous Re values for tm � 40 re-
semble closely the steady ¯ow patterns at the corresponding
steady Reynolds numbers.

Steady ¯ows over cavities with AR� 4, and for Re� 50,
100 and 400, resemble closely those that appear in Fig. 5 when
tm � 40. Clearly, the ¯ow patterns are in¯uenced by Reynolds

number. The closed circulation region has a much reduced
area at the lower Reynolds number of 50, and it is reasonable
to expect that the amount of contaminated ¯uid remaining in
the cavity will be related to this area of recirculating ¯uid. The
analysis that follows shows that, in addition to the dependence
on the ®nal Reynolds number and the steady state ¯ow pat-
tern, the time dependent development of the ¯ow to the steady
state also has a signi®cant e�ect on the amount of contami-
nated ¯uid that is removed from a cavity.

4. Contaminated ¯uid removal from a cavity

When recirculating regions are formed in a cavity during
the ¯ow start-up they entrap part of the contaminated ¯uid
that initially resided in the cavity; the remainder contaminated
¯uid will be ¯ushed by the cavity penetrating duct ¯ow. By
measuring the area covered by the recirculating ¯uid in the
cavity it is possible to estimate the fraction of a cavity area that
will contain contaminated ¯uid soon after a steady state is
reached. The concentration of contaminant in this recirculat-
ing region will di�er from that existing in the cavity initially,
and will depend on how the ¯ow established itself in the cavity.
Further discussion on this topic is included later in this paper.
For now, attention is focused on the fraction of cavity area
occupied by contaminated ¯uid when the ¯ow has reached its
steady state, regardless of contaminant concentration.

Fig. 6(a) shows the fraction of the cavity area containing
contaminated ¯uid when the ¯ow reaches its steady state. The
area enclosed by the recirculating ¯uid in a cavity is repre-
sented by Aw and its value is the area enclosed by the cavity
walls and the streamline separating the recirculating region
from the duct ¯ow. In general, the value of Aw is close to the
value of the total cavity area, Ac, when the cavity aspect ratio is
small and the duct ¯ow Reynolds number is large. With these
conditions any contaminant left in the cavity following the
start-up of the ¯ow will only be further removed by convection
enhanced di�usion as demonstrated by Chilukuri and Mid-
dleman (1983).

The e�ect of the ratio of cavity depth to duct height, D/H, on
the percentage of ¯uid trapped in the cavity is shown in Fig.
6(b). For a given aspect ratio of one or less the ratio D/H has
little e�ect on the removal of contaminated ¯uid, and the per-
centage of contaminated ¯uid remaining in the cavity is rela-
tively high. For larger aspect ratios the amount of contaminated
¯uid trapped in the cavity decreases as D/H decreases.

Fig. 4. The transient development of a cavity ¯ow for Re� 400 and

AR� 4, after an instantaneous start of the duct ¯ow. Numbers rep-

resent nondimensional time.

Fig. 5. Linear acceleration to a maximum Re� 400, tm represents the

time to reach maximum Re. Each row corresponds to the indicated

instantaneous duct Re attained during the acceleration. Each column

represents a di�erent duct ¯ow acceleration.
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Steady state solutions of the ¯ow over a cavity, as devel-
oped by Yeckel et al. (1990) and Mickaily et al. (1992), as well
as those presented in this paper, can predict the fraction of a
cavity that may contain contaminated ¯uid; but streamline
patterns do not indicate how much of the contaminant is re-
moved nor the process by which it is removed. To evaluate this
a number of passive markers are introduced in the cavity prior
to initiating the ¯ow. The motion of each marker was recorded
as the duct ¯ow interacted with that in the cavity. Trial and
error showed that 1600 markers uniformly distributed through
the cavity enabled a good picture of the ¯ow to be realised. The
use of marker particles achieves the same e�ect as adding a
di�usion equation in which the di�usivity is taken as zero, and
therefore the movement of the markers is entirely due to
convection. The use of passive markers has the advantage of
graphically showing how ¯uid is exchanged between the duct
and the cavity.

Fig. 7 shows markers which represent contaminated ¯uid,
and it shows how the contaminated ¯uid is displaced from the
cavity when the Reynolds number is 50. The corner vortices
which form, as shown in the streamline patterns of Fig. 3,
con®ne some of the markers in the cavity. Fig. 8, which il-
lustrates the initial position of the markers which are even-
tually removed from a cavity, suggests that most of the
contaminated ¯uid is removed from the upper downstream
end of the cavity. The path traces of two individual markers
as they are carried by the ¯uid are shown in Fig. 9 for
Re� 50, 400 and 1600. The paths illustrate the tortuous na-
ture by which a contaminated ¯uid element may be either
ejected from the cavity or become permanently trapped in the
cavity.

The percentage of markers removed as time progresses for
AR� 4 and Re� 50 is given in Fig. 10(a). Of particular inte-
rest is the way in which the removal depends on the start-up
time of the duct ¯ow. In the early phases of the motion it is
clear that the percentage of markers removed increases as the
acceleration of the ¯uid increases, but for longer times the
in¯uence of the start-up time is fairly small. This is a signi®cant
result from the cleaning point of view since it will a�ect the
maximum amount of contaminant that can be removed and
provide the basis of assessing the very long term removal when
convection enhanced di�usion takes over.

An insight into the physics by which a higher percentage of
markers is removed when the ¯uid acceleration is high is
provided by the instantaneous streamline patterns shown in
Fig. 5. At the same instant, shortly after ¯ow start-up, a higher

Fig. 6. Fraction of cavity area containing contaminated ¯uid plotted

against: (a) cavity aspect ratio; (b) against D/H.

Fig. 7. The removal process of contaminated cavity ¯uid when AR� 4

and Re� 50. The contaminated ¯uid is represented by passive markers

particles.

Fig. 8. The initial positions of markers which remain or are removed

from the cavity after a steady state ¯ow has been reached.
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acceleration will produce higher velocities in the cavity. These
higher velocities, coupled with the penetration of the duct ¯ow
to the bottom of the cavity, results in the removal of a greater
number of markers from the cavity than would be the case if
the ¯ow velocities in the cavity were lower.

Fig. 10(b) shows the percentage of markers (based on the
total number of markers in the cavity before ¯ow start-up)
removed from cavities of di�erent AR against time. No further
removal of contaminant occurs after the steady state vortex
system becomes established. Over the range of aspect ratios
considered the percentage removed varies almost linearly with
AR. Within the scope of the present calculations a maximum
of about 70% can be removed when AR� 4, but this value will
increase as AR increases; the limit would represent the removal
of foulant from a backward facing step.

Numerical experiments have shown that, for the same AR
and ¯ow acceleration, the ®nal percentage of markers removed
also increases as the Reynolds number increases. This is also
due to the higher velocities in the cavity and the form of the
streamlines as explained earlier.

5. Experimental ¯ow visualisation

To validate the computer model a limited number of ¯ow
visualisation pictures were undertaken. A rectangular water
duct with dimensions of 35 mm ´ 15 mm was ®tted with cavi-
ties of varying aspect ratio, and a depth equal to the duct
height. The ¯uid in the cavity was dyed and assumed to behave
in a way similar to that of the theoretical markers. This is
a good assumption provided the time period of the event
is su�ciently short for molecular di�usion and to be

Fig. 11. Experimental results of cavity ¯uid displacement for Re� 50.

Fig. 10. Percentage of contaminant (markers) removed from a cavity

with time for Re� 50, (a) in¯uence of start-up acceleration for a cavity

with AR� 4, (b) in¯uence of cavity AR (a� 10).

Fig. 9. Path-traces of two markers in a cavity with AR� 4 for di�erent

Reynolds numbers.
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insigni®cant. Time elapsed photographs were taken following
¯ow start-up. The time taken to physically open the ¯ow valve
for the images shown in Fig. 11. was about 5 s (nondimensional
time� 1) which is much less than the nondimensional times of 6
and 120 at which the photographs were taken. The start-up
time in the experiments was of the same order of magnitude as
the numerical calculations. Comparing the experimental dye
solution position for the AR� 4 case with the marker move-
ment simulation in Fig. 7 shows good qualitative agreement.
The results clearly demonstrate how the purging of the con-
taminated cavity ¯uid increases as the aspect ratio increases.

In the early phases of the ¯ow, and for the lower Reynolds
numbers, the percentage of contaminated ¯uid elements re-
maining in the cavity corresponds roughly to the percentage of
the cavity area containing dyed solution. This is due to di�usion
having negligible e�ect at these early times, and the ¯uid orig-
inally in the cavity becoming trapped in the recirculating re-
gions with little change in the concentration of the dye. This is
re¯ected in the good agreement between theory (based on the
number of markers) and experiment as shown in Fig. 12(a) for
Re� 50. A long time after the start the e�ects of di�usion
(which has not been included in the numerical analysis) and the
fact that the trapped contaminant in the cavity will occupy a
greater volume, means that the analysis based on the number of
markers has little bearing on the area occupied the dyed ¯uid.

Fig. 12(b) compares the experimental estimate of the ¯uid
trapped in the cavity (based on the area covered by the dye
solution interface) with the calculations for di�erent Re.
Agreement between experiment and numerical simulation
based on marker numbers is reasonable only for small Rey-

nolds number. This is a result of the concentration of the
contaminant in the trapped ¯uid becoming less with time.
When the percentage of cavity area covered by the markers in
the numerical simulation is compared with the percentage of
cavity area covered by the dye solution in the experiments then
the agreement is much improved. Information on the con-
centration of the contaminant, however, is limited.

6. Conclusions

Laminar ¯ow solutions for parabolic ¯ow over a rectan-
gular cavity have illustrated the e�ect of inertia on the tran-
sient development of the ¯ow over a cavity and have shown
how fresh duct ¯uid purges contaminated ¯uid from the cavity.
The rate at which the contaminated cavity ¯uid is removed is
relatively high during the unsteady start-up of the duct ¯ow
and approaches zero after the ¯ow reaches a steady state. The
cleaning process is enhanced as the cavity aspect ratio is in-
creased and as the duct Reynolds number increases. A pro-
longed cleaning process after steady ¯ow conditions have been
reached is shown to be ine�ective in further purging of con-
taminated ¯uid from a cavity since removal by convection is
negligible and any further cleaning will be almost entirely due
to convection enhanced di�usion.

A ÔvolumetricÕ approach based on the spread of markers is
shown to be useful in determining the fraction of the cavity
that remains contaminated after steady conditions have been
reached. Markers are used to show the regions in a cavity
which are occupied by trapped contaminated ¯uid after steady
¯ow conditions are reached. As AR increases, the dominant
regions are located increasingly near the upstream side of a
cavity where the closed streamlines are formed. Flow visuali-
sation experiments justify the main ®ndings of the numerical
simulations.
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